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Many physical processes are described by birth and death
phenomena and can generally be treated with either a master equation
or Fokker-Planck formulation. We present a numerical study for one
such process which describes the agglomsration of atomic clusters an
clean surfaces during the early stages of thin film formation. We
develop moment equations which describe the evolving size distribu-
tion of these clusters during an atom deposition process. These
moments are derived from both the hierarchical master equations and
the equivalent Fokker-Planck approximation. We limit our treatment to
growth and decay mechanisms which occur via single-atom trans-
itions. |t is shown that the Fokker—Planck approximation is surprisingly
good for sizes down to a few atoms. Analysis of the numerical accuracy
of the Fokker—Planck approximation is given by comparing results for
the total density of clusters, their average size, and the first four
moments of the size distribution function. Results are presented for
growth laws associated with two- and three-dimensional cluster
shapes. © 1993 Academic Press, Inc.

L. INTRODUCTION

In many applied branches of nonequilibrium statistical
physics, several levels of models can be constructed for the
description of the same phenomenon. The beauty of statisti-
cal mechanics, which describes the interactions between a
large ensemble of similar entities, manifests itself in the self-
consistency in which different types of models characterize
the same phenomenon. The premise of such an approach is
that, once a deterministic law is prescribed for the inter-
action of similar entities, one should be able to determine
global and experimentally verifiable phenomenological
parameters, regardless of the level of model used.

This approach of statistical mechanics is indeed a cor-
nerstone in advances made in all areas of physics which are
based on single-particle behavior, Primary applications of
this approach are embodied in the kinetic theory of gases, as
well as extensions to plasma physics, neutron transport, and
radiation transport. When applied to such fields, statistical
mechanics leads to global conservation equations (e.g.,
Navier-Stokes, diffusion, or Boltzmann transport equa-
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tions). The connection between such macroscopic “fluid”
models and the corresponding microscopic “particle” models
is maintained through coefficients which arise in the
macroscopic conservation equations. These coefficients can
be calculated in terms of single-particle mechanics.

A specific application of this procedure can be found in
phenomena which are governed by birth and death pro-
cesses [ 1]. These macroscopic processes are representative
of the fundamental laws of statistical mechanics at the
single-particle level. Such processes have often been used to
describe chemical reactions [27], the population ecology of
social insect colonies [3], and vehicular traffic systems [4],
although initial applications appeared around the turn of

-the century, notably in the works of Smoluchowski [5],

Chapman [6], and Kolmogoroff [7]. The transitions (or
birth and death processes) between different states of the
system are modeled by an infinite set of hierarchical master
equations (MEs). When the transition size is small in com-
parison to the size of the state at which the transition is
occuring, an approximate conservation equation can be
derived. This approximation is the well-known Fokker—
Planck (FP) equation [§]. One notable and early example
of this approximation was presented by Chandrasekhar [9]
who studied the coagulation of colloid particles, obtaining
analytical expressions for the colloid size distribution as a
function of time.

Langevin equations are sometimes used to describe
single-particle motion with a fluctuating force component
[9]. This description is similar to the problem of Brownian
motion in a deterministic force field. Tt can be shown [9]
that this description can be reduced to the Fokker-Planck
formulation. It is generally discussed that the FP
approximation is some sort of “thermodynamic limit” to the
hierarchy of MEs. Nicolis and Prigogine [ 1] argue that this
limit is asymptotically realized either in the limit of long
times or if a large number of particles are in the system.

A generic master equation, which represents the time rate
of change in the probability of a given hierarchical state of
the system, is transformed to a Fokker—Planck equation via
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the Kramers—Moyal expansion [10, 11]. In this approach,
terms of O(47) areignored, where 4 is the relative transition
size.

A problem of current interest, which is generally modeled
by master, Fokker-Planck, or Langevin-type equations, is
the agglomeration of atoms into small atomic clusters. This
problem emerges in several areas, such as radiation effects
[12, 13] and thin film nucleation [ 14, 15, 16, 17]. Various
numerical schemes have been proposed for the solution of
either master or Fokker-Planck equations. Since direct
solutions of the hierarchy of equations which represent
atomic clusters is computationally intractable for clusters
containing thousands of atoms, approximate numerical
methods are desired. Examples are finite difference [18],
finite solution-space [197], grouping [20, 21], propagator
[16], and moments [ 17, 227 methods.

A successful description of atomic clustering phenomena
must couple the nucleation and growth phases of the pro-
cess. This complete description can be achieved directly by
solving the characteristic master equations. The equivalent
Fokker-Planck approximation, however, accounts for
nucleation and growth via appropriate boundary condi-
tions. For this purpose, we developed a two-group
approach for the description of particle cluster aggregation
[237]. We have also developed a moments solution to the
Fokker-Planck equation describing interstitial loops in
irradiated materials [22] and surface clusters during
thin film formation [17]. While the moments approach is
computationally superior to finite-grid-type numerical
techniques, it has the additional advantage of giving direct
physical insight into atomic clustering physics. Compari-
sons with experimentally determined moments can reveal
features of fundamental atomic clustering mechanisms.

In this paper, we wish to compare the accuracy of numeri-
cal moment solutions using both a master equation
formulation [23, 24 ] and a Fokker-Planck approximation
[17,25]. For this purpose and for sell-consistency, it is
necessary to briefly outline the two methods in Section 2.
A comparison of cluster densities, average size, and various
moments of the size distribution is presented in Section 3.
Our conclusions from these comparisons are summarized in
Section 4.

2. PROBLEM FORMULATION

In the present formulation, we assume that thermal atoms
are deposited on an atomically clean, smooth surface, and
that only single atoms are mobile. We also assume that the
dissociation rate of clusters containing two or more atoms
is negligible, compared to the aggregation rate. Single atoms
can aggregate with i-atom clusters at the rate of W{(l,1)
C(l, ¢y C(i,t), where W(l,{) is a size-dependent rate
constant. C(1, #) denotes the density of mobile single atoms
present on the surface at time ¢, whereas C(J, 1) is the density
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of i-atom clusters. Single atoms can also evaporate off the
surface at the rate of v, C(1, 1), where v, is the evaporation
frequency. Letting ¢ represent the deposition rate of mobile
single atoms, then the birth and death equations describing
this simple clustering system are given by

Ea—qall’—t)=q—vaC(1, H=2W(, 1) CHL, 0
—i W(l1,iYC(1, 1) C(, 1) (1)
i=2
ac(gi, D w1, i 1) Cll 1) Cli— 1, 1)

-w(L AL )G, izl

(2)

The factor of 2 in the —2W/(1, 1} C*(1, t) term of Eq. (1)
accounts for the fact that #wo single atoms are lost in the
production of a two-atom cluster. This simple system is
similar to the one developed by Zinsmeister [14, 26] and
used by Adams and Hitchon [167]. The effects of mobility
coalescence [23 ], cluster dissociation [17], and atom trap-
ping at surface defects [ 17] have been previously analyzed.
In the present work, however, we wish to make the com-
parison clear by focusing only on deposition, evaporation,
and single-atom aggregation phenomena. In this respect,
the comparison between the ME and FP approaches is
based on a minimum number of physically realizable
processes. Furthermore, the aggregation rate constant,
W(1, i), is assumed to have the size dependence

W(l,i)=Wy(l +i"), (3)

where the growth exponent, r, equals ! for 2D cluster
growth, and % for 3D clusters. For a comprehensive
discussion of the clustering model, the reader is referred to
our previous work [17, 27].

2.1. Direct Moment Equations

Introduce power moments, N, (t), of the cluster -size
distribution according to

Ndn)= i i*C(i, 1). (4)

i=1

The total cluster density is denoted by Ny(z), while N,(¢#)
represents the total number of atoms, per unit surface area.
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Taking the time derivative of Eq. (4), we use Eq. {1) and {2)
to obtain

0N (1)
ot

=g—v,(C(1,1)

+§ W(1,i) C(1, 1) Cl, 1)

i=1

x[(i+ 1) —i*—1]. (5)

The clusters are now classified into two size groups, i < X,
and iz X_. A continuous description is used for large
clusters, where C(x, ¢} is used instead of C(i, 1), and sums
are replaced by integrals. The transition cluster size, X, is
defined as the smallest size described by the continuum.
It should be noted that X.=2. We now introduce the
moments, M ,{(¢), of the large cluster population as

M,((t)=J‘w XC(x, £) dx (6}

such that M,{(¢) and N, () are related by

Xe—1
M (D) =N(6)— ¥ i*Cl, 1),

i=1

(7)

To obtain a set of closed moment equations for M (f),
we expand all size-dependent quantities in a second-order
Taylor series evaluated at the average continuum-cluster
size, ¥(r) = M (1) M,(1). Solving this set of kinetic moment
equations yields the solution to the corresponding ME
problem. The moments of the large-size cluster population,
M (1), can then be used to determine characteristics of the
continuum-cluster size distribution, as shown in Table .
Details of this procedure are given in Ref [23] and
therefore will not be reproduced here.

2.2. Fokker—Planck Approximation

Consider Eqg. (2), where the cluster density, C{i —1, 1},
and the rate constant, W(l,{— 1), are both expanded in
a second-order Taylor series about i This procedure is

TABLEI

Characteristics of the Continuum-Cluster Size Distribution,
x 2 X, Based on a Master Equation (ME) Solution
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standard in birth and death formulations and yields the
following approximation for x = 2 which has the form of a
Fokker—Planck equation:

aC(x, 1) &

= "o {f}“(x, 1) Clx, 1)

L aena, r)]} (8)
X

where the drift and dispersion frequency functions, % (x, 1)
and 2(x, t), are given by

F(x, 1)= W1, x) C(1, 1) (9)
Dx, 1)=3F(x, 1), (10)

where the continuous vanable, x, has replaced the discrete
variable, i, for the cluster size. A general discussion of the
master and FP equations is given by Reif [28].

Equation (8) can be used to develop kinetic moment
equations for the following characteristics of the large-size
cluster population: C,,,(7), the total density of continuum
clusters,

Cut) =] Clx 1 dx; (11)
Xe
¢x (1), the average size of continuum clusters,
in=(g ) xcn ax (12)
X = X ) ;
Cmt(t) Xe

and .#,(¢), the nth central moment of the continuum-cluster
size distribution,

ﬁ,,(f)=(c lm) [7 Le= o1 Cle n . (13)

Xy

The procedure then remains to solve a set of discrete kinetic
rate equations for the small-size cluster population [i.e.,
Eqgs. (1) and (2} for cluster sizes up to i= (X, — 1}] which

TABLEIT

Characteristics of the Continuum-Cluster Size Distribution,
x 2 X, Based on a Fokker-Planck (FP) Solution

Characteristic ME notation Characteristic FP notation
Total cluster density [ # jem?) Mylt) Total cluster density [ # /fcm?] Cialt}
Average cluster size [atoms ] M (0 My(1y= (1) Average cluster size [atoms] {x(n)
Second scaled moment M ()R Second scaled moment W ARTEEN)!
Third scaled moment M, (0/#0(1) Third scaled moment A (1)

Fourth scaled moment M, (0% (1)

Fourth scaled moment

A x5 ()

581/104/2-12
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are coupled to kinetic moment equations for C,, (1), <x>(1),
and .#,(t). This procedure, together with the appropriate
inttial and boundary conditions, has been discussed in
Refs, [17, 277 and thus will not be repeated here. The result-
ing FP solution can be used to determine characteristics
of the continuum-cluster size distribution, as shoewn in
Table II.

3. COMPARISON OF THE ME AND FP
NUMERICAL SQLUTIONS

Developing moments directly from the master equation,
or an equivalent moment formulation from the Fokker—
Planck approximation, results in a stifl system of coupled,
non-linear, ordinary differential equations which couple dis-
crete, small-size clusters to a continuum, large-size popula-
tion. Solving this system of equations yields quantities
which are characteristic of the complete cluster distribution.
These quantities are the densities of the small-size clusters
~ for sizes up to (X,—1), as well as quantities which are
characteristic of the large-size “continuum” population
(specifically, the total density of continuum clusters, the
average size of continuum clusters, and higher moments of
the continuum cluster distribution function ). In this section,
we present a comparison between the ME and FP solution
technigues for various values of the transition cluster size,
X, and the growth exponent, r.

In both the ME and FP solutions, thermal particle
deposition is assumed to begin on a bare, defect-free sub-
strate at time zero. Single atoms are deposited at a rate of
g=10"" atoms/cm?/s, and mobile single atoms evaporate
off the substrate at a frequency of v,=274x10%s .
The aggregation rate coefficient is taken to be Wy=
1.50 x 10" ecm?/s. It should be noted that v, and W,
depend on such physical system properties as the substrate
temperature and lattice parameter, activation energies for
adatom desorption and diffusion, characteristic vibrational
frequencies, and the size of the deposited atoms; however,
the above values are used for this study.

To investigate the accuracy of the FP approximation to
the corresponding ME solution, features of the large-size,
“continuum” cluster population will be compared. These
characteristics, which include the total cluster density,
average cluster size, and various moments of the con-
tinuum-cluster size distribution, are listed in Tables I and 11
for both solution methods. Reconstructing the continuum-
cluster distribution function with four moments allows
one to model dispersion, skewness, and kurtosis in the
distribution, features that are readily compared with the
experimental measurements. Results are presented for two
values of the transition cluster size, X =2 and 5, and three
values of the growth exponent, r=0, {, and 3.
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Figure 1 displays a comparison between the ME solution,
denoted by symbols, with the corresponding FP
approximation, shown with iines. The comparison is made
for the toal cluster density using r=3 (Fig. 1a), and the
average cluster size with r=1 (Fig. 1b). Compared to the
ME solution, the FP approximation tends to overestimate
the total cluster density and underestimate the average
cluster size; however, the overall agreement appears very
good. Since our clustering model focuses on single-atom
transitions, a better agreement is found with X, =5 rather
than X, =2 because the order of the transition (ie., 4=1)
i1s closer to the neighborhood of X,=2, making these
results more sensitive to transition-induced fluctuations,
This demonstrates that the FP solution becomes a better
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FIG. 1. Coemparing characteristics of the continuum-cluster size
distribution, computed from both the FP approximation and the
corresponding ME solution: {a) total cluster density for r=1; (b) average
cluster size for r = 1.
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approximation to the ME solution when the transition size,
4, is small in comparison to the size of the state at which the
transition occurs (ie., X,

During the early stages of the deposition process (i.e., for
times 7 < 10~ *s), the effect of increasing the transition size
from X, =2 to X,=35 is seen as a general reduction in the
total cluster density (Fig. la) with a corresponding increase
in the average cluster size (Fig. 1b). This occurs because the
X _ =35 results consider 2, 3, and 4-atom clusters to be mem-
bers of the discrete, small-size cluster population, whereas
the X =2 results place these clusters in the continuum
group. Increasing X, distributes more clusters in the
discrete, small-size cluster group, hence decreasing the total
density of continuum clusters (Fig. 1a), but increasing their
average size (Fig. 1b). When the total cluster density and
average size are considered for the complete distribution
(which considers both the discrete, small-size clusters and
the continuum, large-size population), these early clustering
results do not depend on the choice of X, [27]. At times
later than 10~ 7s, Fig. 1 indicates that this transition-size
offset is eliminated because the average cluster size is much
greater than X .

Figures la and b are indicative of the general trends
for various growth exponents,r. Making allowance for
variations in r produces only a quantitative change in the
clustering results. More detailed analyses of the effects
of cluster size-dependent aggregation and cluster geometry
during the early stages of thin film {ormation can be found
in Refs. [25, 27].

Figure 2 illustrates the moments of the continuum-cluster
size distribution computed from both the ME solution
(symbols) and FP approximation (lines). Results are
presented for r=0. Calculations using =4 and 1 show
similar trends. The FP approximation underestimates the
ME solution, most noticeably at the time of 1072 s. Overall,
the agreement between the two solution techniques is fairly
good. As previously discussed, the X, =35 results compare
better than the X, =2 results because the X,.=35 calcula-
tions are less sensitive to transition-induced fluctuations.
The offset displayed between the X, =2 and X,=5 results
for times <10 *s is due to the fact that the moments
shown in Fig. 2 are characteristic of the continuum-cluster
size distribution; when moments arec computed for the com-
plete distribution, this discrepancy decreases significantly
but is not eliminated. This may indicate that the cluster
nucleation kinetics are more sensitive to the continuum
properties of the complete distribution, rather than its
discrete characteristics [277.

4. CONCLUSIONS

Our numerical analysis of the early stages of thin film for-
mation indicate that a FP solution is a good approximation
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to the corresponding ME approach. In the framework of a
two-group meodel, in which clusters are placed into a dis-
crete, smail-size group or a continuum, large-size popula-
tion, the FP approximation does surprisingly well down
to X,=2 when only single-atom transitions govern the
clustering kinetics. This may not be the case when cluster
coalescence, dissociation events, or atom trapping at surface
defects are included. Large-scale transitions, such as
coalescence reactions, are best described by a two-group
ME solution [23]. The influence of the transition cluster
size, X,, and the growth exponent, r, appears to be
secondary to the effects of the expansion methods and
moment evaluation techniques used in the ME and FP
approaches. Although one may use the calculated moments
to reconstruct the cluster distribution function, this
reconstruction remains a separate problem and is not
related to either the ME or the FP solution [23]. Conse-
quently, it is more sensible to base numerical comparisons
on moment calculations, as outlined in this paper.
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